Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

UDC 004.415.2
DOI https://doi.org/10.32782/2663-5941/2024.3.1/24

Oleshchenko L.M.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Zheng Jinsong
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

LSTM NEURAL NETWORK IMPLEMENTATION
FOR THE STOCK MARKET OPERATIONS PREDICTING

The stock market is an essential part of the modern financial system. Analyzing and forecasting trends in the
stock market can effectively help investors avoid investment risks and increase profits. The stock index reflects
changes in the stock market and can indicate market trends. Time series forecasting in the stock market is a
relevant research direction among investors and researchers. Traditional statistical models are widely used
in time series forecasting tasks of stock market data. Due to the nonlinear characteristics of time series data,
traditional statistical models have certain limitations and forecasting problems. Machine learning models can
effectively address nonlinear problems in time series data. With the development of machine learning models,
deep learning models such as artificial neural networks have begun to be widely used in forecasting time series
for stock market data.

The article analyzes the use of recurrent neural networks for forecasting operations in the stock market. The
main advantages and disadvantages of existing solutions are provided. The proposed software architecture
and key technologies for forecasting operations in the stock market are described, including the description
of the developed software, its main modules, and components. The functional capabilities of the developed
software product are outlined. The effectiveness of the proposed software method using LSTM neural network
for forecasting operations in the stock market is analyzed.

The proposed software implements the LSTM neural network training method to improve the accuracy of
forecasting financial operations in the stock market. According to the conducted research, the use of LSTM
can increase the accuracy of forecasting operations in the stock market by up in average to 15 % compared
to using the ARMA model. The developed software in the Python programming language, along with machine
learning libraries and modules, allows obtaining relatively accurate forecasting results compared to using
known statistical methods.

Key words: software, neural networks, ARMA, ANN, RNN, LSTM, Python, TensorFlow, stock market
operations forecasting.

Problem statement. Stocks, originating from
the Dutch East India Company in 1611, symbolize
ownership in companies and are key assets for
investors, offering both high risks and potential
returns. Stock markets worldwide generate vast
data daily, crucial for investors’ decision-making.
However, predicting stock prices is complex due to
factors like noise, non-linearity, and unpredictable
investor behavior.

Challenges in forecasting include noise in data,
nonlinearity, overfitting, dynamic market conditions,
and the need for advanced algorithms. Adapting
to evolving market dynamics, limited historical
data availability, model complexity, and external
factors like unethical practices or global events
further complicate predictions. Overcoming these
challenges necessitates advanced modeling, rigorous
data preprocessing, continuous refinement, and deep
market understanding.

160 Tom 35 (74) N2 32024

The main goal of the article is creating software
to predict stock market prices and obtain more
accurate results.

Related research. The article [1] explores the
use of LSTM networks to predict future stock price
trends based on historical prices and technical
indicators, achieving promising results in predicting
stock price movements. The paper [2] proposes an
LSTM-based RNN for forecasting future values
of GOOGL and NKE assets, showing promising
results in tracing opening prices, with future work
aimed at optimizing data length and training epochs
to improve prediction accuracy. The article [3]
concludes that the CEEMDAN-LSTM mixture
model optimally forecasts stock index prices for both
the S&P 500 and CSI 300 indices, outperforming
other models such as SVM, BP, Elman network,
and WAV combined with CEEMDAN. Stock
market prediction is a complex task in financial

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

research, tackled through various methodologies like
fundamental and technical analysis. Fundamental
analysis examines economic, political, company-
specific, and psychological factors influencing stock
prices. Economic indicators and political stability
impact stock markets significantly, while company
profitability and industry development also play
crucial roles. Technical analysis relies on quantitative
indicators like price and volume, emphasizing market
rules and short-term trends. Investor behavior,
influenced by herd mentality and reflexivity theory,
further complicates predictions. Manipulation by
market makers, bubbles, and panic selling add layers
of complexity. Historical data analysis is vital for
understanding market trends and patterns, guiding
accurate predictions [4—7].

Existing software solutions. Stock market
technical methods are broadly categorized into
traditional statistical and machine learning approaches.
Time series data, organized in chronological order,
is fundamental for time series forecasting, which
aims to predict future trends based on historical
data. Traditional statistical methods like ARMA and
ARIMA are well-established, while machine learning
methods like support vector machines (SVM) and
neural networks are increasingly popular due to
their effectiveness and generalization capabilities.
Statistical prediction models encompass various
techniques tailored for different types of variables,
such as categorical, ordinal, interval, and ratio
variables. Regression analysis, moving average,
cyclical change analysis, and seasonal change analysis
are common statistical methods used for stock market
prediction. These methods aim to model and forecast
stock price trends, but each has its limitations and
challenges, such as the need for data preprocessing
and the suitability for non-linear time series like stock
prices [8].

Machine learning models excel in handling
non-linear stock data compared to traditional
statistical methods. As a rapidly growing branch of
artificial intelligence, machine learning has evolved
significantly from symbolic learning to statistical
learning. It focuses on enhancing system performance
across various fields like medicine, biology, and
economics. Different machine learning algorithms
are employed based on the research objectives,
such as decision trees and Bayesian classifiers for
classification tasks and linear regression and neural
networks for regression tasks. Additionally, machine
learning algorithms are categorized into supervised
learning, which uses labeled training data, and
unsupervised learning, which doesn’t require labeled

information, with examples including classification
and regression for supervised learning and clustering
for unsupervised learning [9].

LSTM networks excel in predicting stock
market operations due to their unique ability to
capture long-term dependencies in sequential data.
Unlike traditional neural networks, LSTMs can
effectively model complex and non-linear patterns
over extended periods, making them well-suited
for financial time series analysis. Analyzing stock
market transactions provides valuable insights into
market trends and investor sentiment, with the
increasing volume of electronic trades generating
substantial big data. LSTM networks offer
promising prospects for accurately predicting stock
market movements by leveraging their superior
performance in handling temporal dynamics and
incorporating historical information. As financial
markets evolve, LSTM networks continue to
demonstrate their effectiveness in forecasting
stock market behavior, making them a preferred
choice for researchers and practitioners seeking
robust predictions. Ongoing advancements in deep
learning further enhance the capabilities of LSTM
networks, ensuring their relevance in stock market
forecasting [10].

Decision support methods in stock market
operations aid investors, traders, and financial
professionals in making informed decisions. They
encompass fundamental analysis, technical analysis,
algorithmic trading, and sentiment analysis.

Fundamental analysis evaluates a company’s
financial health and intrinsic value, while technical
analysis forecasts price movements using historical
data and statistical tools. Algorithmic trading
automates trading decisions using computer
algorithms based on various strategies. Sentiment
analysis assesses market sentiment by analyzing news,
social media, and other sources, employing NLP and
machine learning. Implementing NLP-driven insights
into trading systems enhances decision-making,
providing actionable information for investors.

Machine learning models, like neural networks,
SVM, and decision trees, are increasingly used
for predicting stock prices. These methods, often
used together, depend on investor preferences and
market conditions, with technology advancements
continuously enhancing decision support tools.

Data sources and data preprocessing.
In empirical research, data quality significantly
impacts results. Data collection methods include statis-
tical surveys and scientific empirical methods. Authen-
ticity is ensured by sourcing data from Yahoo Finance.

161

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

This research uses five years of real historical
time series data from NASDAQ Index ETF, S&P
500 Index ETFE, and DOW JONES Index ETE,
from September 1st, 2018, to September 1st, 2023.
Data preprocessing involves reviewing data for
completeness and accuracy, dealing with missing
values, and standardizing data.

If too many missing values exist, a threshold can
be set, and attributes exceeding it may be deleted.
Alternatively, missing numeric values can be filled
using averages, while non-numeric ones can be filled
with the mode. Linear interpolation can fill missing
values based on fitted linear relationships, but it may
not be suitable for data at the beginning or end of a
sample, where alternative methods like mean filling
may be considered.

Data standardization aims to clarify variable
relationships and enhance comparability by scaling
data within a specific interval. Common methods
include min-max, log function, atan function, and
z-score standardization. Each method affects model
results differently, and selection depends on data and
model conditions. Standardization benefits model
convergence speed and accuracy.

This research adjusts data to the range of 0 to 1
using standardization due to the sensitivity of the deep
learning model framework to input data. The most
common method is min-max standardization, which
linearly transforms data to fit within [0,1], retaining
original data correlations but with some limitations.

If new original data needs to be added in the
experiment, this method has a certain probability
of causing its maximum and minimum values to
change, so it needs to be re-perform definitions and
calculations:

X, — min{x j}

_ 1<j<n
Vi

_max{xi}—min{xj}’ ()

1<j<n I<j<n

where max is the maximum value in the sample data,
and min is the minimum value in the sample data.

Log function conversion method uses the log
function with base 10 to transform data, with the goal
of achieving normalization. This method is one of the
most commonly used methods in linear regression
and data regression research. The specific formula is
as shown below:

X =log,, (x). (2)

In the z-score standardization method, if all data
do not need to be mapped to the interval [0,1], then
the most common method is z-score standardization,
also called standard deviation standardization. The
formula is shown below.

162 Tom 35 (74) N© 3 2024

Yi= iS > 3)
I
X _;;xi’ (4)
| Q- _\2
S—\/E;(Xi —X) . (5)

This method normalizes the original data to new
data using z-score. After converting the original
sequence, the new sequence y,, y,, ..., y, formed after
X, X,, ..., X, changes has a mean of 0, a variance of 1,
and no dimension. This is because x-x only changes
the mean of the data, while the standard deviation
remains the same. Logisitic transformation uses the
logistic function to transform data. The function
of the logistic function is to make the data tend to
0 in the interval from negative infinity to 0, and
tend to 1 in the interval from 0 to positive infinity.
The logisitic function is as shown in the following
formula.

1
Yi= (6)
(

l+e™) .

In this research, the data is standardized by using

the “min-max data standardization method” in the
data preprocessing stage.

The LSTM deep learning model framework in
this study requires standardized data for accurate
predictions. Python 3.11.5 is utilized, employing the
MinMaxScaler preprocessing class from the Scikit-
learn library for data normalization. Python offers
versatile tools for data handling, including Pandas
for efficient data manipulation and Scikit-learn for
scaling and preprocessing tasks. These libraries
empower data scientists to seamlessly explore and
prepare datasets, facilitating subsequent analysis and
machine learning tasks.

Proposed software method. In the research we
build LSTM model to predict stock price of sample
data. The LSTM model is mainly designed to solve
the problems of gradient disappearance and gradient
explosion during long sequence training. It is so far
the best model for time series prediction among deep
learning methods (Fig. 1).

We build the LSTM model framework based on
the LSTM layer, Dropout layer and Dense layer in the
neural network. In the experiment of this research, the
Keras deep learning framework is used to build the
framework.

First, we use the Keras deep learning framework
to build a Sequential model; secondly, add the
LSTM layer, Dropout layer and Dense layer in the
neural network to the model in sequence, and set

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

DATA PREPROCESSING STAGE

Time segment at time t

Number of sampleg

Time sequence

MODEL BUILDING STAGE PREDICTION STAGE

Gat pradiction results

and analyze them

Fig. 1. LSTM model usage to predict stock price of sample data

the parameters of each layer. Among them, the
activation function uses Relu function to optimize the
framework. The algorithm adopts Adam algorithm.

The Keras sequential model allows us to specify a
neural network, precisely, sequential: from input to output,
passing through a series of neural layers, one after the
other. TensorFlow also allows to use the functional API
for building deep learning models. A Sequential model is
appropriate for a plain stack of layers where each layer
has one input tensor and one output tensor.

This research aims to build a deep learning
model LSTM framework to predict time series
data of Exchange-Traded Fund stock index (ETF).
In order to effectively verify the accuracy of the
framework established in this research in the index
return prediction problem, this research selects three
different stock index ETF sample data in the same
time period to test the model, namely, the NASDAQ
Index ETF, the S&P 500 Index ETF, and the Dow
Jones Index ETF.

In order to better evaluate the prediction accuracy
of each model, this research uses two evaluation
indicators: MAE (mean absolute error) and RMSE
(root mean square error) . The formulas of each
evaluation index are as follows:

Vi = Yil> (7)

1 n
E=—
MA n;

n A \2
RMSE = %Z(yi_yi) D (8)
i=1
where y, represents the real value of the index ETF in
the i-th period, y, represents the predicted value of
the index ETF in the i-th period.
RMSE is the operation of squaring and
accumulating errors and then taking the square root.

Therefore, RMSE actually magnifies the gap between
errors, while MAE can reflect a more realistic error
situation.

The results of the two evaluation indicators RMSE
and MAE are that, the smaller the number, the better
the prediction effect of the model and the higher the
accuracy of the model.

This research selects five years NASDAQ Index
ETF (ticker symbol: QQQ), S&P 500 Index ETF
(ticker symbol: SPY), and DOW JONES Index ETF
(ticker symbol: DIA) stock market closing prices
time series data as sample data.

We divide the three sample data into a training set
and a test set. The training set is used to learn the
potential rules, the test set is to test the model trained
on the training set in the new sample of the test set to
judge the model’s ability to discriminate new samples.
The method of dividing the training set and the test
set of the exponential sample in this research keeps
consistent. The first 80 % of the time series data is
used as the training set, and the last 20 % of the time
series data is used as the test set.

In the model building stage, this research uses the
Keras deep learning framework to build the LSTM
model. The specific methods are as follows.

First, we build a Sequential model in the Keras
deep learning framework.

Second, we add the necessary neural network layers
to the Sequential model in sequence. These include
LSTM model layer, Dropout layer and Dense layer.

In the hidden layer, there are a total of 64 neurons,
the output layer is set to 1 neuron, and the input
variables are features of one time step (t-1).

The default parameter settings are as follows:
dropout_ratio in the Dropout layer is 0.5, the output
space dimension of the Dense layer is 2, the input

163

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

space dimension of the LSTM layer is 100, the
optimization function is Adam, and the loss function
is Mean Absolute Error (MAE).

NASDAQ Index ETFs replicate the NASDAQ
stock market’s performance, known for its focus on
tech and growth companies. They offer diversified
exposure to NASDAQ’s stocks without buying
individual ones. These ETFs, like Invesco QQQ Trust
(ticker: QQQ), track NASDAQ indices and are traded
on stock exchanges.

Similarly, S&P 500 Index ETFs, such as SPY, mirror
the S&P 500’s performance, representing 500 large-
cap US companies. They provide diversified market
exposure without buying individual stocks. DOW
JONES INDEX ETFs, like DIA, mimic the Dow Jones
Industrial Average’s performance, consisting of 30 large
US companies. They offer exposure to the DJIA’s
performance without buying its individual stocks.

In the research, we explore the relationship
between length of time period and accuracy of
prediction, and the relationship between data
volatility and accuracy of prediction. Therefore,
we use 6 months, 1 year, 3 years and 5 years four

18 stock data =
89-01")
11 stock_data.head()

yf.download('QQQ"

We import all the required libraries. yFinance is
an open-source Python library that allows to acquire
stock data from Yahoo Finance.

sklearn.preprocessing import MinMaxScaler

1 import math

2 import yfinance as yf

3 import numpy as np

4 import pandas as pd

5 dimport matplotlib.pyplot as plt
6 import tensorflow as tf

7 from

8 from tensorflow import keras

9

from tensorflow.keras import layers

different time periods to test the relationship
(Table 1).

The relationship between the length of time and
prediction accuracy is nuanced and depends on
various factors. Successful prediction strategies often
involve a combination of models tailored to different
time horizons, considering the specific characteristics
and challenges associated with each. The choice of
features, model architecture, and the incorporation of
external factors play crucial roles in determining the
effectiveness of predictions across different timeframes.

Research results. For the research we select
five years (from September 1, 2018 to September 1,
2023) NASDAQ Index ETF (ticker symbol: QQQ),
S&P 500 Index ETF (ticker symbol: SPY), and DOW
JONES Index ETF (ticker symbol: DIA) stock market
closing prices time series data as sample data to
implement LSTM model. We use the yFinance method
to acquire the stock data starting from September 1,
2018 to September 1, 2023 and then preview the data:

s Start="2018-89-01"', end='2823-

Table 1
Research time periods to test the relationship between data volatility and accuracy of prediction
Stock symbol Time length Time range

6 months 01/03/2023-01/09/2023

1 year 01/09/2022-01/09/2023

NASDAQ INDEX ETF (QQQ) 3 years 01/09/2020-01/09/2023
5 years 01/09/2018-01/09/2023

6 months 01/03/2023-01/09/2023

1 year 01/09/2022-01/09/2023

S&P 500 INDEX ETF (SPY) 3 years 01/09/2020-01/09/2023
5 years 01/09/2018-01/09/2023

6 months 01/03/2023-01/09/2023

1 year 01/09/2022-01/09/2023

DOW JONES INDEX ETF (DIA) 3 years 01/09/2020-01/09/2023
5 years 01/09/2018-01/09/2023

164 Tom 35 (74) N2 3 2024

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Code running result as below:

We set the plot figure size and title, use the Matplotlib plot method to create a line chart for historical close

Date
2018-09-04
2018-09-05
2018-09-D6
2018-09-07
2018-09-10

Date
2018-09-04
2018-09-05
2018-09-06
2018-09-07
2018-09-10

Open

186.080002
185.520004
183.529999
180.5300000
182.149994

Open

186.080002
185.520004
183.529999
180.5300000
182.149994

High

186.299954
185.550003
183.750000
182.669998

182.250000

High

186.2999594
185.550003
183.750000
182.669998

182.250000

184.850006
182.820007
180.580002
180.440002

180.7 299096

184.850006
182.820007
180.580002
180.440002

180.729996

Close

185.850006
183.449997
181.809998
181.110007

1817.720001

Close

185.850006
183.449957
181.809998
181110001

181.720001

Aj Close

179.448425
177431104
175.547607
174871719

175400678

Adj Close

175.448425
177.131104
175.547607
174871719

175460678

prices of QQQ, in the code lines 15-16 we set the x-axis and y-axis labels:

12 plt.figure(figsize=(15, 8))

13 plt.title('Stock Prices History')
14 plt.plot(stock data['Close'])

15 plt.xlabel('Date")

16 plt.ylabel('Prices (%)')

Code running result as below (Fig. 2):

Volume

29063500
42623300
46091400
46629500
26132000

Vol ume

29063500
42623300
46091400
46629500
26132000

Prcins {51

50

=]
=]

g
LR
(=]

00

Stock Prices Histary

"
019

a0

=
02l
Date

4l

bl

PLFE]

Fig. 2. The line chart for historical close prices of QQQ

165

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

We extract the closing prices from the acquired
stock data and convert it to a number series, calculate
the data size for 80 % of the dataset. The math.ceil
method is to ensure the data size is rounded up to an

integer. We use the Scikit-Learn MinMaxScaler to
normalize all stock data ranging from 0 to 1. We also
reshape our normalized data into a two-dimensional
array:

17 close_prices = stock_data['Close’]
18 wvalues = close_prices.values
19 training_data_len = math.ceil(len{values)* 8.8)

28 scaler = MinMaxScaler(feature_range=(8,1))
21 scaled_data = scaler.fit_transform(values.reshape(-1,1))
22 train_data = scaled_data[@: training data_len, :]

23 x_train = []
24 y_train = []

25 for i in range(6d, len(train_data)):
26 x_train,.append(train_datali-eo:i, @])
27 y_train.append(train_datal[i, 2])

28 x_train, y_train = np.array(x_train}), np.array(y_train}
29 x_train = np.reshape(x_train, (x_train.shape[a],

x_train.shape[1], 1))

In the code line 22 we set apart the first 80 %
of the stock data as the training set. Code lines
23-24 create an empty list for a sequence of
feature data (x_train) and a sequence of label data
(y_train).

Code lines 25-27 create a 60-days window of
historical prices (i-60) as our feature data (x_train)
and the following 60-days window as label data
(y_train).

Code lines 28-29 convert the feature data
(x_train) and label data (y_train) into Numpy
array as it is the data format accepted by the
Tensorflow when training a neural network model.
Reshape again the x_train and y_train into a three-
dimensional array as part of the requirement to
train a LSTM model.

Then we extract the closing prices from our
normalized dataset (the last 20 % of the dataset):

3@ test_data = scaled_data[training_data_len-68: , :]

31 x_test [1

32 y_test = values[training_data_len:]

33 for i in range(6@®, len(test_data)):
34 x_test.append(test_data[i-6@:1i, 8])

35 x_test = np.array(x_test)
36 x_test =
1))

Code lines 31-34: similar to the training set, we
will have to create feature data (x_test) and label data
(y_test) from our test set.

Code lines 35-36 convert the feature data (x_test)
and label data (y_test) into Numpy array. Reshape again
the x_testand y_test into a three-dimensional array.

np.reshape(x_test, (x_test.shape[8], x_test.shape[1],

We define a Sequential model which consists
of a linear stack of layers and add a LSTM layer
by giving it 100 network units, set the return
sequence to true so that the output of the layer
will be another sequence of the same length (code
lines 37-38):

37 model = keras.Sequential()
38 model.add(layers.LSTM(180, return_sequences=True,
input_shape=(x_train.shape[1], 1)))

We add another LSTM layer with also 100 network units. But we set the return_sequence to false for this
time to only return the last output in the output sequence length (code line 39):

39 model.add(layers.LSTM(188, return_sequences=False))
4@ model.add(layers.Dense(25))
41 model.add(layers.Dense(1))

42 model.summary()

166 Tom 35 (74) N2 3 2024

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

“sequential”

lstm (LETM) oo} 40800
_1 (LSTM (Non 10 20400
dense (Dense None., 25 2525
dense_1 (Dense (Mo 1) 26
Total params: *3751 (483. 40 KB
Trainable params: 123751 (483. 40 KB)
Non=trainable params: O (0.00 Byte)

Fig. 3. The summary of LSTM neural network

Code line 40 adds a densely connected neural
network layer with 25 network units. Code line 41
at last, adds a densely connected layer that specifies
the output of 1 network unit. Code line 42 shows the
summary of our LSTM neural network. Code running

Then we adopt Adam optimizer and set the mean
square error as loss function and train the model by
fitting it with the training set. We try with batch
size of 1 and run the training for 3 epochs (code
lines 43-44):

result as below (Fig. 3).

43 model.compile(optimizer="adam', loss='mean_squared error')
44 model.fit(x_train, y train, batch _size= 1, epochs=3)

Code running result as below (Fig. 4).

Epoch 1/3
946,/946 [=== =] — 40s 37ms/step — loss: 0.0035
Epoch 2/3
946,/946 [=== =] - 36s 39ms/step — loss: 0.0015
Epoch 3/3
046,/946 [=== =] - 35s 37ms/step — loss: 0.0012

<{keras. src. callbacks. History at 0x781fac6ffeb0>

Fig. 4. The training for 3 epochs

We apply the model to predict the stock prices based on the test set and use the inverse transform method

to denormalize the predicted stock prices (code lines 45-46):

45 predictions = model.predict(x_test)

46 predictions = scaler.inverse_transform(predictions)
47 rmse = np.sqrt(np.mean(predictions - y test)*#*2)
48 print("RMSE=", rmse)

49 mae = np.mean(np.abs(predictions - y test))

5@ print("MAE=", mae)

51 daily volatility = np.std(predictions)

52 print("daily_volatility=", daily volatility)

53 count = np.size(predictions)

54 print("count=", count)

55 volatility = daily veolatility * np.sqrt(count)

56 print(“"Volatility=", wvolatility)

167

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

Code lines 4748 apply the RMSE formula to
calculate the degree of discrepancy between the
predicted prices and real prices (y_test) and display
the result. Code lines 4950 apply the MAE formula
to calculate the degree of discrepancy between the

8/8 [s====s=======s==s===ss=======

predicted prices and real prices (y_test) and display
the result. Code lines 51-56 apply the volatility
formula to calculate the volatility of stock prices
based on the test set and display the result.

Code running result as below (Fig. 5).

- 1s 32ms/step

RMSE= 9.1085936060445718

MAE= 31.6988327615506

daily wolatility= 33.66907
count= 251

Volatility= 533.4184053639773

Fig. S. The volatility of stock prices based on the test set

We use the filter method to only retain the closing price column in the dataframe and split our stock data
into three plotting regions: training, validation and prediction (code lines 57-60):

57 data = stock data.filter(['Close'])

58 train = data[:training_data_len]

59 walidation = data[training data len:]
6@ walidation['Predictions'] = predictions

61 plt.figure(figsize=(16,8))

62 plt.title('Model’)

63 plt.xlabel('Date')

64 plt.ylabel('Close Price USD (%$)')

65 plt.plot(train)

66 plt.plot(validation[['Close’', 'Predictions']])

67 plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
68 plt.show()

Code lines 61-68 configure the chart figure size, title, x-axis & y-axis label. Code running result as below (Fig. 6).

Madel

&0

W
y Iﬂ""'%'rl |
' N

(\ ;
. Hﬁ% %m ﬁf

po ‘
' \W" Vi

Close Price LIS (5]
= 4
e —
-
-

= Train
150 { va
= Predecbions

20139 2030 2021 202 2023

Fig. 6. Training, validation and prediction for closing price

168 Tom 35 (74) N2 32024

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

In the research we compare results between a classic
ARMA (Auto Regressive Integrated Moving Average)
model and LSTM model.

The difference in performance between a classic
ARMA model and an LSTM model for prediction can
vary significantly depending on the specific dataset, the
characteristics of the time series, and the quality of the
features used (Table 2).

To compare the ARMA and LSTM models, we split the
dataset into training and testing sets, train both models,
and evaluate their performance using Mean Squared Error
and Mean Absolute Error metrics. The choice between
models depends on the data’s characteristics, with
ARMA suitable for linear, stationary series and LSTM
for more complex patterns. Empirical testing is crucial for
a reliable comparison. Using LSTM can enhance stock

market forecasting accuracy by up in average to 15 % due
to its ability to capture complex patterns and handle non-
stationary data. The time period factor, reflecting training
and testing duration, influences prediction accuracy.
Longer training periods capture long-term trends, crucial
for gradual changes. ARIMA requires sufficient training
for stationarity, while LSTM benefits from longer periods.
Adapting models to changing patterns through periodic
updates enhances accuracy. Finding the optimal time
period balances historical information capture and model
adaptability to change.

We use 6 months, 1 year, 3 years and 5 years four
different time periods to test the relationship between
length of time horizon and accuracy of prediction. It
performs three trials for each period. The test results
are as below (Table 3).

Table 2

The difference between a classic ARMA model and an LSTM model

Model

Strengths

Weaknesses

ARMA

ARMA models are effective for capturing linear
dependencies in time series data and are relatively
interpretable.

ARMA may struggle with non-linear relationships,
complex patterns, and long-term dependencies.

LSTM

LSTMs excel at capturing non-linear dependencies,
handling long sequences, and learning complex
patterns. They are well-suited for time series data
with intricate dynamics.

LSTMs can be computationally intensive, may
require a larger amount of data to train effectively,
and their black-box nature makes interpretation

more challenging.

Table 3
The test the relationship between length of time horizon and accuracy
Stock index symbol | Time period Trial MAE Average MAE RMSE Average RMSE
1 2 3 4 5 6 7

6 months 1st trial 6.7135 1.7893

6 months 2nd trial 9.6697 8.7709 1.9716 1.8691
6 months 3rd trial 9.9296 1.8464
1 year Ist trial 10.7406 6.1734

1 year 2nd trial 15.3006 14.7756 5.0005 6.3860
HI\‘IISS)]?/E(T?F | year 3rd trial | 18.2858 7.9841
(QQQ) 3 years 1st trial 24.3482 7.9908

3 years 2nd trial 24.3163 24.1006 7.6801 8.1220
3 years 3rd trial 23.6374 8.6952
5 years Ist trial 31.4609 7.5907

5 years 2nd trial 31.5941 31.5846 10.5352 9.0781
5 years 3rd trial 31.6988 9.1086
6 months 1st trial 5.8295 1.0637

6 months 2nd trial 6.1867 5.9424 1.6571 1.3618
6 months 3rd trial 5.8112 1.3648
1 year 1st trial 8.3912 3.1726

1 year 2nd trial 9.1074 8.4622 3.2899 2.6822
INS]%’;%E’IF | year 3rd rial | 7.8880 1.5840
(SPY) 3 years Ist trial 11.7970 3.7479

3 years 2nd trial 11.5517 12.1536 2.6988 4.3685
3 years 3rd trial 13.1121 6.6587
5 years Ist trial 17.8998 4.4478

5 years 2nd trial 21.1163 18.7945 15.1932 8.3420
5 years 3rd trial 17.3673 5.3850

169

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

Table 3 (ending)

1 2 3 5 6 7
6 months Ist trial 4.2899 1.1860
6 months 2nd trial 5.0016 4.4544 1.5155 1.2047
6 months 3rd trial 4.0717 0.9126
1 year 1st trial 9.3840 1.7926
1 year 2nd trial 7.8737 7.9804 1.8309 1.8547
DOW JONES INDEX 1 year 3rd trial 6.6833 1.9406
ETF(DIA) 3 years 1st trial 9.4862 2.6493
3 years 2nd trial 9.5737 9.5353 2.4493 2.5654
3 years 3rd trial 9.5460 2.5977
5 years Ist trial 15.4066 2.8401
5 years 2nd trial 15.2846 15.6000 1.4647 3.2497
5 years 3rd trial 16.1087 5.4442

Volatility measures the degree of price fluctuation
in financial instruments over time and is crucial in
assessing risk. In stock market prediction, volatility
significantly impacts model performance. Traditional
models like ARIMA may struggle with high volatility
due to their stationary assumptions.

Advanced models like LSTM networks are more
adaptable to volatility, capturing long-term patterns
effectively. Models incorporating volatility indicators
can better manage uncertainty. High volatility poses
challenges for prediction accuracy, but adaptive
models can offer robust forecasts.

In the research, we test volatility’s relationship
with prediction accuracy over different time periods
using MAE and RMSE evaluation metrics. LSTM
models demonstrate high accuracy, especially in
shorter time frames and high-volatility scenarios.

Conclusions and future work. Stock market data
are affected by many external factors, such as national
policy, macroeconomics, company fundamentals and
human psychological factors. Therefore, stock price

patterns are difficult to predict, which in turn affects
stock indexes. Traditional statistical analysis prediction
models have certain deficiencies in predicting complex
stock market time series data, while the deep learning
model LSTM neural network has greater advantages
in predicting long-term series data, and the model has
stronger generalization capabilities.

By building a deep learning LSTM neural network
model, the influence of certain human irrational
factors can be eliminated, allowing the computer
to continuously learn from historical data to derive
corresponding data change patterns. The use of LSTM
can improve the accuracy of forecasting operations in
the stock market by up in average to 15 % compared
to using the ARMA model according to the research.
LSTM neural network demonstrates promising
accuracy in predicting stock market operations,
highlighting its potential for effective forecasting,
while future research could explore its application
across diverse market conditions and the integration
of real-time data for enhanced performance.

Bibliography:
1. David M. Q. Nelson, Adriano C. M. Pereira, Renato A. de Oliveira. Stock Market’s Price Movement
Prediction with LSTM Neural Networks. International Joint Conference on Neural Networks (IJCNN). 2017.

P. 1419-1426. DOI: 10.1109/IJCNN.2017.7966019.

2. Adil Moghar, Mhamed Hamiche. Stock Market Prediction Using LSTM Recurrent Neural Network. Inter-
national Workshop on Statistical Methods and Artificial Intelligence (IWSMAI). 2020. Warsaw, Poland. Procedia
Computer Science. Vol.170. P. 1168-1173. DOI: 10.1016/j.procs.2020.03.049.

3.LinY, Yan Y., Xu J., et al. Forecasting stock index price using the CEEMDAN-LSTM model. The North
American Journal of Economics and Finance. 2021. Vol. 57. P. 101421.

4. Fischer T., Krauss C. Deep learning with long short-term memory networks for financial market predictions.
European Journal of Operational Research. 2018. Vol. 270. P. 654-669.

5. Yang Q., Wang C. Research on global stock index prediction based on deep learning LSTM neural network.

Statistical Research. 2019. Vol. 36 (03). P. 65-77.

6. Han Shanjie, Tan Shizhe. Design and implementation of deep learning model for stock prediction based on
TensorFlow. Computer Applications and Software. 2018. Vol. 35 (6). P. 267-271.
7. Bao Zhenshan, Guo Junnan, Xie Yuan, Zhang Wenbo. Stock price fluctuation prediction model based on

LSTM-GA. Computer Science. 2020. Vol. 47. P. 467—473.

170 Tom 35 (74) N2 32024

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

8. G. Peter Zhang. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing.
2003. Vol. 50. P. 159-175.

9. Liu S., Zhang C., Ma J. CNN-LSTM neural network model for quantitative strategy analysis in stock mar-
kets. International Conference on Neural Information Processing. Springer, Cham. 2017. P. 198-206.

10. Ouyang Hong-Bing, Huang Kang, Yan Hong-Ju. Prediction of financial time series based on LSTM neural
network. Chinese Journal of Management Science. 2020. Vol. 28 (4). P. 27-35.

Ouemenxo JI.M., Yen L. SBACTOCYBAHHSI HEUPOHHOI MEPEXKI LSTM
JIJISI TIPOTHO3YBAHHS ONEPAIIN HA ®OHJIOBOMY PUHKY

DonoosUlL PUHOK € BAJICTUBOIO HACMUHOI CYYACHOI ¢hinancosoi cucmemu. Ananiz i NPOSHO3YEAHHSA
meHOeHYill pOHO08020 PUHKY MOXHCE eheKMUBHO OONOMOSMU IHBECIMOPAM YHUKHYMU IHEECMUYIUHUX PUSUKIE
i 30inbuwumu npubdymox. @ondosuil inoexkc 8i006pa;icac 3MiHU HA POHO0BOMY PUHKY mMa Modice 8i00bpaxcamu
menoenyii punky. Ilpoeno3yeanus wacosux psoie Ha PoHOOBOMY PUHKY € AKMYATbHUM HANPIMKOM 00CAI0dCeHb
ceped ineecmopie i naykosyis. Tpaouyilini cmamucmuyni Mooeni WUpoKo BUKOPUCMOBYIOMbC 8 3a0a4ax
NPOSHO3YBAHHS YACOBUX Psdie danux (orndosoco punky. Uepes meninilini xapakxmepucmuxu OaHUX 4acoux
pAdie mpaouyitiHi cmamucmudti Mooeni Maiomv NedHi HeOoniKu ma npodiemu npocHosysauHs. Mooeni
MAWUHHO20 HABUAHHA MONCYMb eeKmUsHO SUPIUY8amu HeniHitHi npobiemu 8 OaHux yYacoeux psaodig. 3
PO3BUMKOM MOOeell MAUUHHO20 HABYAHHA, MO0l 2IUDOKO20 HABYAHHSA, MAKI AK WMYYHI HelpPOHHI Mepedici,
ROYANU WUPOKO BUKOPUCTOBYBAMUCS 8 NPOSHO3YB8AHHI YACO8UX PAOi6 01 0aHUX (POHO0B020 PUHKY).

Y ecmammi npoananizosano sukopucmaHHs pexypeHmuux HeUpoHHUX Mepexc O NPOSHO3YB8AHH onepayill
Ha ghonoosomy punky. Haseoeno ocnosui nepesazu ma nedoniku icHyrouux piwieHsb. Onucano 3anponoHo8aHy
apximexmypy npozpamHozo 3abe3neyesHs ma 0CHOBHI MeXHON02Ii 018 NPOSHO3Y8aHHA onepayili Ha (poHO08oMY
PDUHKY, HABEOEHO ORUC PO3PODIEHO20 NPOZPAMHO20 30a0e3NeUeHHs, 020 OCHOBHUX MOOYILi8 Ma KOMNOHEHMIS.
Hasedeno pynxyionanvui moocaueocmi — po3pobnenozo npocpamHozo npooykmy. Ilpoananizoearo
eheKmuBHIiCMb 3aNPONOHOBAH020 NPOCPAMHO20 MEMOOY 3 BUKOPUCMAHHAM Heupounoi mepexci LSTM ons
NPOCHO3Y8AHHSA onepayiti Ha YOHO080MY PUHK).

3anpononosane npocpammue 3abe3neueHHs peanizye Memoo Has4yauHs HeupouHnoi mepedci LSTM ona
niOGUUEHHS MOYHOCMI NPOSHO3YBAHHA (DIHAHCOBUX onepayiil Ha Gondosomy punky. 32i0HO Oocriodicens,
suxopucmanna LSTM moowce nioguwyumu moyHiCmb NPOSHO3VB8AHHA onepayili Ha (GOHO0BOMY DUHKY 6
cepeouvomy 0o 15 % y nopieuannui 3 euxopucmannam mooeni ARMA. Pospobnene npoepamue 3abe3neueHus
Ha Mmo8i npozpamysanus Python paszom i3 GiOniomexamu ma MOOYIAMU MAWUHHO20 HABYAHHA 00360/14€
ompumyeamu i0HOCHO MOYHI pe3yIbMAaAmu NPOSHO3YBAHHS, AHINC 3 BUKOPUCIAHHAM 8I0OMUX CIMAMUCTIUYHUX
Memoois.

Kniouosi cnosa: npocpamne sabesneuenns, neuponni mepesci, ARMA, ANN, RNN, LSTM, Python,
TensorFlow, npoeno3zysanns onepayiii hoHO08020 PUHK).

171

